From Wikipedia, the free encyclopedia
Pressure broadening
[edit]
The presence of pertubing particles near an emitting atom will cause a broadening and possible shift of the emitted radiation.
There is two types impact and quasistatic
In each case you need the profile, represented by Cp as in C6 for Lennard-Jones potential
![{\displaystyle \gamma ={\frac {C_{p}}{r^{p}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/28399d9b3a27d733039534a59c1670d313ac1d7b)
Assume Maxwell-Boltzmann distribution for both cases.
From (Peach 1981, p. 387) harv error: no target: CITEREFPeach1981 (help)
For impact, its always Lorentzian profile
![{\displaystyle P(\omega )={\frac {1}{\pi }}~{\frac {w}{(\omega -\omega _{0}-d)^{2}+w^{2})}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/68a03966e5978de702303afa7e318d61815a4745)
![{\displaystyle w+id=\alpha _{p}\pi nv\left[{\frac {\beta _{p}|C_{p}|}{v}}\right]^{2/(p-1)}\Gamma \left({\frac {p-3}{p-1}}\right)\exp \left(\pm {\frac {i\pi }{p-1}}\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/968ded8ca6e4832be0715300d8ae91fed7217807)
![{\displaystyle \alpha _{p}=\Gamma \left({\frac {2p-3}{p-1}}\right)\left({\frac {4}{\pi }}\right)^{1/(p-1)}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/22e9c1a4b88a004ee7c898342e53add5251a4a1d)
![{\displaystyle v={\sqrt {\frac {8kT}{\pi m}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c69672a58c9efed9a198ac6c1ef971a46fad91db)
![{\displaystyle \beta _{p}={\frac {{\sqrt {\pi }}\,\Gamma ((p-1)/2)}{\Gamma (p/2)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1f096e1aabd17fe52625ba01e29f26247bc657c7)
- Broadening by linear Stark effect
![{\displaystyle \gamma =divergent}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3c5018c216cb56f937e27ae7fffe2e804e0c19a8)
![{\displaystyle C2=???}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c3db1edaaa6218d83b06f8ed03e38168257e9818)
- Debye effects must be accounted for
- Broadening by ???
![{\displaystyle \gamma =divergent}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3c5018c216cb56f937e27ae7fffe2e804e0c19a8)
![{\displaystyle C3=???}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2e9fdf4e794f92b23998c7c2dc1437d621b68205)
- Broadening by quadratic Stark effect
![{\displaystyle \gamma =divergent}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3c5018c216cb56f937e27ae7fffe2e804e0c19a8)
![{\displaystyle C4=???}](https://wikimedia.org/api/rest_v1/media/math/render/svg/09e2541026d3cb2e7eed5776d883c8842089706e)
- Broadening by Van der Waals forces
![{\displaystyle \gamma =divergent}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3c5018c216cb56f937e27ae7fffe2e804e0c19a8)
![{\displaystyle C6=???}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ce4033353e1663319a0380f9e86234d44baf66a5)
Quasistatic broadening
[edit]
From (Peach 1981, p. 408) harv error: no target: CITEREFPeach1981 (help)
For quasistatic, functional form of lineshape varies. Generally its a Levy skew alpha-stable distribution (Peach, page 408)
![{\displaystyle \Delta \omega _{0}L(\omega )={\frac {1}{\pi }}\Re \left[\int _{0}^{\infty }\exp(i\beta x-(1+i\tan \theta )x^{3/p})\,dx\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fcda761391efed14bf4134435d7e62db74d92392)
![{\displaystyle \beta =\Delta \omega /\Delta \omega _{0}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6eb4a7fe312a7dc7445f013e3b2727f1d68db2b0)
![{\displaystyle \Delta \omega =\omega -\omega _{0}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f73241c16aec6d780afca7b803267c9c471f6061)
![{\displaystyle \theta =\pm 3\pi /2p\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/da513b50cebd7ec1658766ef89594f6229f782c9)
![{\displaystyle \Delta \omega _{0}=|C_{p}|\left({\frac {4\pi n}{3}}\Gamma (1-3/p)\cos(\theta )\right)^{p/3}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0ce772c4228ea862b596f2cc202dd50c198c3a8b)
- Broadening by linear Stark effect
![{\displaystyle P(\nu )={\frac {1}{\pi \gamma }}\int _{0}^{\infty }\cos \left({\frac {x(\nu -\nu _{0})}{\gamma }}\right)\exp(x^{-3/2})\,dx}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7e65b382270b2bdfa880c89aed37ec55b157c2fd)
![{\displaystyle \gamma =|C_{2}|\pi \left({\frac {32n^{2}}{9}}\right)^{1/3}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3018af1b2e68f7fa4a3a9f9d2e36526592fc4cb2)
![{\displaystyle C2=???}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c3db1edaaa6218d83b06f8ed03e38168257e9818)
![{\displaystyle P(\omega )={\frac {\gamma }{(\omega -\omega _{0})^{2}+\gamma ^{2}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4922ef81436e78964abe62c9a00fcdc586d04248)
![{\displaystyle \gamma =|C_{3}|2\pi ^{2}n/3\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/187edc5834d4281c046633ae1ce577f67d23292e)
![{\displaystyle C_{3}=K{\sqrt {\frac {g_{u}}{g_{l}}}}~{\frac {e^{2}f}{2m\omega }}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/44124dbaf32f895d07a54dd4bb80077cfde750cb)
where K is of order unity. Its just an approximation.
- Broadening by quadratic Stark effect
![{\displaystyle P(\nu )=???}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d96b47e699c93fdc149ac28ddbe3229a7abfd725)
![{\displaystyle \gamma =|C_{4}|\left({\frac {4\pi }{3}}\Gamma (1/4)\cos(\theta )n\right)^{4/3}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3cb9aa7410420ffd27b08fb24d79419064f22794)
(Peach1981 & Peach 1981, Eq 4.95) harv error: no target: CITEREFPeach1981Peach1981 (help)
where
and
are the static dipole polarizabilities of the i and j energy levels.
![{\displaystyle \theta =\pm {\frac {3\pi }{8}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b5ee926a6ba67676610bf62f575c03897cbb9dfd)
- Broadening by Van der Waals forces gives a Van der Waals profile. C6 is the wing term in the Lennard-Jones potential.
![{\displaystyle P(\omega )={\sqrt {\frac {\gamma }{2\pi }}}~{\frac {\exp \left(-{\frac {\gamma }{2|\nu -\nu _{0}|}}\right)}{(\nu -\nu _{0})^{3/2}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3859605c9b653ba707a901ad234fef4977a105f7)
for
![{\displaystyle (\nu -\nu _{0})C_{6}\geq 0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0cc31240679e7484458293b116e2e703b9f1e4e9)
0 otherwise.
![{\displaystyle \gamma =|C_{6}|{\frac {8\pi ^{3}n^{2}}{9}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0561e35e6abf821ec7ff98afdf3e4ed01fee0817)
(Peach 1981, Eq 4.101) harv error: no target: CITEREFPeach1981 (help)
(Peach 1981, Eq 4.100) harv error: no target: CITEREFPeach1981 (help)
where K is of order 1.